Meshfree explicit local radial basis function collocation method for diffusion problems

نویسندگان

  • B. Sarler
  • R. Vertnik
چکیده

This paper formulates a simple explicit local version of the classical meshless radial basis function collocation (Kansa) method. The formulation copes with the diffusion equation, applicable in the solution of a broad spectrum of scientific and engineering problems. The method is structured on multiquadrics radial basis functions. Instead of global, the collocation is made locally over a set of overlapping domains of influence and the time-stepping is performed in an explicit way. Only small systems of linear equations with the dimension of the number of nodes included in the domain of influence have to be solved for each node. The computational effort thus grows roughly linearly with the number of the nodes. The developed approach thus overcomes the principal large-scale problem bottleneck of the original Kansa method. Two test cases are elaborated. The first is the boundary value problem (NAFEMS test) associated with the steady temperature field with simultaneous involvement of the Dirichlet, Neumann and Robin boundary conditions on a rectangle. The second is the initial value problem, associated with the Dirichlet jump problem on a square. Tile accuracy of the method is assessed in terms of the average and maximum errors with respect to the density of nodes, number of nodes in the domain of influence, multiquadrics free parameter, and timestep length on uniform and nonuniform node arrangements. The developed meshless method outperforms the classical finite difference method in terms of accuracy in all situations except immediately after the Dirichlet jump where the approximation properties appear similar. @ 2006 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-order fundamental and general solutions of convection-diffusion equation and their applications with boundary particle method

In this study, we presented the high-order fundamental solutions and general solutions of convection-diffusion equation. To demonstrate their efficacy, we applied the highorder general solutions to the boundary particle method (BPM) for the solution of some inhomogeneous convection-diffusion problems, where the BPM is a new truly boundaryonly meshfree collocation method based on multiple recipr...

متن کامل

RBF-based meshless boundary knot method and boundary particle method

This paper is concerned with the two new boundary-type radial basis function collocation schemes, boundary knot method (BKM) and boundary particle method (BPM). The BKM is developed based on the dual reciprocity theorem, while the BKM employs the multiple reciprocity technique. Unlike the method of fundamental solution, the two methods use the non-singular general solution instead of singular f...

متن کامل

A radial basis function partition of unity collocation method for convection-diffusion equations ⋆

Numerical solution of multi-dimensional PDEs is a challenging problem with respect to computational cost and memory requirements, as well as regarding representation of realistic geometries and adaption to solution features. Meshfree methods such as global radial basis function approximation have been successfully applied to several types of problems. However, due to the dense linear systems th...

متن کامل

THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S

In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.

متن کامل

Local Meshless Method for the Numerical Solution of the Two-Dimensional Nonlinear Burger’s Equations

This paper examines the numerical solution of the nonlinear coupled Burger’s equations with various values of viscosity by local meshless methods. The local radial basis functions collocation method (LRBFCM) belongs to the class of truly meshless methods which do not need any underlying mesh but work on a set of uniform or random nodes only, without any a priori node to node connectivity. The n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2006